- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jiang, Shuli (3)
-
Joshi, Gauri (1)
-
Li, Dennis (1)
-
Li, Irene Mengze (1)
-
Mahankali, Arvind (1)
-
Pham, Hai (1)
-
Sharma, Pranay (1)
-
Woodruff, David P. (1)
-
Zhang, Qiuyi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the problem of communication-efficient distributed vector mean estimation, which is a commonly used subroutine in distributed optimization and Federated Learning (FL). Rand-k sparsification is a commonly used technique to reduce communication cost, where each client sends of its coordinates to the server. However, Rand-k is agnostic to any correlations, that might exist between clients in practical scenarios. The recently proposed Rand-k-Spatial estimator leverages the cross-client correlation information at the server to improve Rand-k's performance. Yet, the performance of Rand-k-Spatial is suboptimal, and improving mean estimation is key to faster convergence in distributed optimization. We propose the Rand-Proj-Spatial estimator with a more flexible encoding-decoding procedure, which generalizes the encoding of Rand- by projecting the client vectors to a random k-dimensional subspace. We utilize Subsampled Randomized Hadamard Transform (SRHT) as the projection matrix and show that Rand-Proj-Spatial with SRHT outperforms Rand-k-Spatial, using the correlation information more efficiently. Furthermore, we propose an approach to incorporate varying degrees of correlation and suggest a practical variant of Rand-Proj-Spatial when the correlation information is not available to the server. Finally, experiments on real-world distributed optimization tasks showcase the superior performance of Rand-Proj-Spatial compared to Rand-k-Spatial and other more sophisticated sparsification techniques.more » « less
-
Jiang, Shuli; Li, Dennis; Li, Irene Mengze; Mahankali, Arvind (, Proceedings of Machine Learning Research)
-
Jiang, Shuli; Pham, Hai; Woodruff, David P.; Zhang, Qiuyi (, Proceedings of Machine Learning Research)
An official website of the United States government

Full Text Available